Menselijk microbioom
Menselijk microbioom

Het Microbioom en Probiotherapie - YUN Webinar NL (Mei 2024)

Het Microbioom en Probiotherapie - YUN Webinar NL (Mei 2024)
Anonim

Menselijk microbioom, het volledige scala aan micro-organismen (de microbiota) die op en bij de mens leven en, meer specifiek, de verzameling van microbiële genomen die bijdragen aan het bredere genetische portret of metagenoom van een mens. De genomen die het menselijke microbioom vormen, vertegenwoordigen een opmerkelijk diverse reeks micro-organismen, waaronder bacteriën, archaea (primitieve eencellige organismen), schimmels en zelfs sommige protozoa en niet-levende virussen. Bacteriën zijn verreweg de meest talrijke leden van het menselijke microbioom: de bacteriepopulatie alleen wordt geschat op tussen de 75 biljoen en 200 biljoen individuele organismen, terwijl het hele menselijke lichaam bestaat uit ongeveer 50 tot 100 biljoen somatische (lichaams) cellen. De enorme microbiële overvloed suggereert dat het menselijk lichaam in feite een 'supraorganisme' is,”Een verzameling van menselijke en microbiële cellen en genen en dus een mix van menselijke en microbiële eigenschappen.

Ontdekking van het menselijke microbioom

Het eerste wetenschappelijke bewijs dat micro-organismen deel uitmaken van het normale menselijke systeem ontstond halverwege de jaren 1880, toen de Oostenrijkse kinderarts Theodor Escherich een type bacterie (later Escherichia coli genoemd) in de darmflora van gezonde kinderen en kinderen met diarree aantrof. In de jaren die volgden, beschreven wetenschappers een aantal andere uit het menselijk lichaam geïsoleerde micro-organismen, waaronder in 1898 de soort Veillonella parvula, een bacterieel lid van de orale, spijsverterings-, urine- en bovenste ademhalingsflora, en in 1900 bifidobacteriën, leden van de darmflora. Gedurende de 20e eeuw werden een aantal andere micro-organismen geïsoleerd uit de neusholtes, mondholtes, huid, maagdarmkanaal en urogenitale kanalen en gekarakteriseerd als onderdeel van de menselijke microbiota.Hoewel deze groep organismen sinds zijn ontdekking op verschillende manieren is geconceptualiseerd, werd het concept van het menselijke microbioom, en dus de intensieve studie ervan, voornamelijk ontwikkeld in het eerste decennium van de 21e eeuw.

Knowledge of the human microbiome expanded appreciably after 2007, the year the Human Microbiome Project (HMP)—a five-year-long international effort to characterize the microbial communities found in the human body and to identify each microorganism’s role in health and disease—was launched. The project capitalized on the decreasing cost of whole genome sequencing technology, which allows organisms to be identified from samples without the need for culturing them in the laboratory; the technology also facilitates the process of comparing DNA sequences of microorganisms isolated from different parts of the human body and from different people. In the first three years of the project, scientists discovered new members of the human microbiota and characterized nearly 200 different bacterial member species.

Microbial diversity

By some estimates, the human microbiota may consist of a total of 900 or 1,000 different species of microorganisms, making for an extraordinarily diverse collection of microbial genomes. This diversity manifests in differences in microbial composition not only from one human to the next but also between matching body parts, such as the right and left hands, of the same individual. For example, as one study has shown, a typical palm surface of the hand can harbour more than 150 different bacterial species, only 17 percent of which are common to both hands of the same person and only 13 percent of which are shared by different persons.

The human gut is another site characterized by a high degree of microbiome diversity and abundance. In a study of 124 European individuals, researchers isolated some 3.3 million microbial genes. Many of these genes represented frequently occurring bacterial gut species, at least 160 of which were believed to inhabit each person’s gut. The identification of such frequently occurring species in populations is fundamental to defining so-called common bacterial cores, which enable scientists to explore the interface of the human microbiome with factors such as diet, culture, and genotype (genetic makeup).

The role of the human microbiota

Most members of the human microbiota benefit humans by providing them with traits that they would not otherwise possess. Some microorganisms found in the human gut, for instance, obtain nutrients from ingested food in return for assisting with the breakdown of food or preventing the colonization of the gut by harmful bacteria. There are, however, many microorganisms in the human microbiota that are closely related to pathogenic (disease-causing) organisms or are themselves capable of becoming pathogenic. Examples include bacterial species of the genera Staphylococcus, Streptococcus, Enterococcus, Klebsiella, Enterobacter, and Neisseria.

Clostridium difficile infectionserves as a useful example for illustrating the significance of the relationship between the human microbiome and health and disease. C. difficile infection, which is characterized by severe recurrent diarrhea, abdominal cramping, and nausea, occurs most often in persons who receive a course of antibiotics while in a hospital. Antibiotics kill or inhibit the reproduction of pathogenic bacteria and in the process cause dramatic changes in normal human microbial communities, such that previously established colonies may be overtaken by colonies of different and potentially pathogenic species. In the case of C. difficile, researchers have discovered that infection can be treated effectively through fecal, or stool, transplantation, in which fecal material from a healthy person is transferred to the patient, thereby restoring populations of beneficial gut microbiota.

Scientists studying obesity have detected an increased abundance of Prevotella and Firmicutes bacteria and of methanogenic (methane-producing) archaea in obese individuals relative to normal-weight persons and persons who have undergone gastric bypass surgery. Scientists suspect that these microorganisms are more efficient at harvesting carbohydrates from food than are the types of microorganisms that dominate the gut flora of normal-weight individuals. The extra nutrients are then stored in the body as fat.

Ongoing study of the human microbiome is expected to continue to shed light on fundamental aspects of human physiology and particularly human nutrition. Improved understanding of nutritional requirements could lead to changes in dietary recommendations and in food production. In addition, information about the human microbiome could lead to the development of new diagnostic techniques and treatments for a variety of human diseases, as well as to the development of industrial products based on substances (e.g., enzymes) that are produced by members of the human microbiota.